SPIN 2002

The challenge of hyperon polarization

Sergey Troshin, Nikolai Tyurin

Institute for High Energy Physics, Protvino, Russia

Session 3

$$\Lambda$$
-polarization in $pp \to \Lambda X$ (experiment)
Heller, E8

- negative and energy independent
- ullet grows linearly with x_F for $p_\perp >$ 0.8 GeV/c
- ullet p_{\perp} independent for 0.8 $< p_{\perp} <$ 3.5 GeV/c
- ullet A_N and D_{NN} show similar p_\perp dependence

- Λ polarization is not understood in pQCD Felix; Soffer; Liang Zuo-tang, Boros
- \diamond A straightforward collinear factorization very small P_{A}
- ♦ Modifications of simple pQCD

$$P_{\Lambda} \sim 1/p_{\perp}$$

Qiu, Sterman; Efremov, Teryaev; Kanazava, Koike; Brodsky, Hwang, Schmidt

 \diamond Role of k_{\perp} -effects

$$P_{\Lambda} \sim k_{\perp}/p_{\perp}$$

polarizing fragmentation functions

Sivers; Collins; Kochelev;

Anselmino, Boer, D'Alesio, Murgia;

Buskulic, ALEPH Coll.

The models

- ⋄ confinement (Lund, Thomas precession)
- chiral symmetry breaking

Troshin, N.T.

- chirality is broken by the vacuum

$$\langle 0|\bar{\psi}\psi|0\rangle \neq 0$$

– generates quark masses:

$$m_U = m_u - 2g_4\langle 0|\bar{u}u|0\rangle - 2g_6\langle 0|\bar{d}d|0\rangle\langle 0|\bar{s}s|0\rangle.$$

NJL.

Bernard, Jaffe, Meissner

massive quarks – quasiparticles

$$\langle U|\bar{s}s|U\rangle/\langle U|\bar{u}u+\bar{d}d+\bar{s}s|U\rangle\sim 0.1-0.5$$

- scale $\Lambda_\chi \simeq 4\pi f_\pi \simeq 1$ GeV

Nonperturbative hadron – constituent quarks + quark condensate

Spin of constituent quark

$$J_U = 1/2 = J_{uv} + J_{\{\bar{q}q\}} + \langle L_{\{\bar{q}q\}} \rangle = 1/2 + J_{\{\bar{q}q\}} + \langle L_{\{\bar{q}q\}} \rangle.$$

Estimate: $\langle L_{\{\overline{q}q\}} \rangle \simeq$ 0.4

associated with the orbital angular momentum (cloud quarks rotate coherently)

Orbital motion of quark matter — origin of the asymmetries in inclusive processes

Interaction of hadrons

- overlapping and interaction of peripheral clouds, condensate excitation
- quasiparticles
- mean field

Hyperon production

- \blacksquare Recombination (Q+S), soft interactions
- \blacksquare Scattering Q, hard interactions ($r < R_Q \sim 1/\Lambda_X$)

It is short distance dynamies which leads to production of palanged NS.

Mechanism for ∧ polarization Polarization of strange quark results from

multiple scattering of Q

$$\mathcal{P}_Q \propto -I \frac{m_Q g^2}{\sqrt{s}} \sim const$$

Szwed

$$m_Q\sim m_h/3,~~I\sim \sqrt{s}$$

ullet correlation between s-quark polarization and polarization of the parent Q

$$\langle L_{\{\overline{q}q\}}\rangle^{\mathcal{P}_Q(x)} = \mathcal{P}_Q(x)\langle L_{\{\overline{q}q\}}\rangle$$

$$L_{s/Q} = \alpha \mathcal{P}_Q(x)\langle L_{\{\overline{q}q\}}\rangle$$

$$\begin{split} P(s,x,p_\perp) &= \sin[\mathcal{P}_Q(x)\alpha \langle L_{\{\overline{q}q\}}\rangle] \frac{R(s,x,p_\perp)}{[1+R(s,x,p_\perp)]}, \end{split}$$

$$R(s,x,p_\perp) \gg 1 \quad \text{at} \quad p_\perp > \Lambda_\chi \end{split}$$

$$P(s, x, p_{\perp}) = \sin[\mathcal{P}_Q(x)\alpha \langle L_{\{\bar{q}q\}}\rangle]$$

- ullet vanishing polarization for $p_{\perp} < \Lambda_{\chi}$
- ullet P_{Λ} increase in the region of $p_{\perp} \simeq \Lambda_{\chi}$
- ullet p_{\perp} independent polarization for $p_{\perp}>\Lambda_{\chi}$

Figure 1: Transverse momentum and x dependence of P_{Λ} .

Bravar

Figure 11: Spin observables in $p \uparrow p \to \Lambda^0 + X$ at 200 GeV/c from FNAL.

The large positive D_{NN} values indicate a sizable spin transfer (as large as 30 %) from the incident polarized proton to the outgoing Λ^0 . Large spin transfers in hyperon production have been also observed in inclusive Ξ^- and Ω^- production by a neutral beam containing also transversely polarized Λ^0 's and Ξ^0 's 42,43 . Unfortunately, the amount of this spin transfer has been never quantified. The spin transfer in the latter reactions is more easily in erpreted in quark models, since a polarized valence strange quark from the incoming polarized hyperon is transferred to the outgoing hyperon which is also polarized, while in the former process $(p \uparrow p \to \Lambda^0 + X)$ there are no polarized valence strange quarks in the incident polarized proton.

Figure 11 is my favorite plot concerning *spin effects* in inclusive Λ^0 production. It summarizes the 3 spin observables discussed so far. All data shown were taken in the same kinematical region and simultaneously (experiment E704 at FNAL) ⁴¹, therefore allowing for a straightforward comparison of P_0 , A_N , and D_{NN} . All 3 spin parameters show a similar p_T dependence, but with different signs and magnitudes, in which the asymmetries increase with p_T :

$$P_0 \sim -D_{NN} \sim \frac{1}{3}A_N < 0$$
.

In most of the quark models proposed so far to explain the Λ^0 polarization, the Λ^0 spin is carried by its constituent *strange* quark while the *ud* di-quark is in a spin and isospin singlet state (SU(6) wave functions). Therefore, no correlation with the incident proton polarization is expected in Λ^0 production, since

 \bullet D_{NN} is positive since P_{Λ} has the same sign as \mathcal{P}_{Q}

Fig. 2. • Similarity of p_{\perp} dependencies

Experimental prospects

$$p_{\uparrow,\rightarrow}+p_{\uparrow,\rightarrow}=\Lambda_{\uparrow,\rightarrow}+X.$$
 $(n,n,n,0)$ and $(l,l,0)$

- ullet significant P_{Λ} at RHIC energies
- a signal for QGP formation (chiral symmetry restoration)

 $P_{\Lambda} \rightarrow 0$ with centrality increase

Angert; Panagiotou; Ayala, Cuautle, Herrera, Montano;

Troshin, N. T.